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The problem of rolling of a viscoelastic cylinder on a base of the same material 

is solved under the assumption that the whole contact area consists of two sec- 
tions: a section with adhesion and a section with slipping of the contacting SIP 

faces. Equations are found to determine the length of the contact area and the 
adhesion section, as are expressions for the stresses on the contact area. 
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Reynolds [l] noted that relative sliding of the contacting surfaces occurs dur- 
ing the rolling of elastic solids because of their deformation. The results of 

experiments [2, 31 verify the importance of the sliding friction forces at the 
contact which originate in connection with the differences in the curvatures of 
the surfaces making contact. In many cases the imperfect elasticity of the real 
materials [4] is no less important. As the cylinder rolls on a base of viscoelastic 

material, the deformations of the material ahead of and behind the moving cylin- 

der are different, which is due to the presence of an aftereffect. Consequently, 
a shift of the contact zone occurs in the direction of motion and a nonsymmetric 

pressure distribution of the cylinder on the base takes place over the contact area. 

As a result a rolling friction moment originates. 
The simultaneous effect of the above-mentioned causes affecting the resistance 

to rolling is considered below. 

The relations between the strain and stress components in an isotropic viscoelastic 

body are taken in the following form: 

Here a and p are parameters characterizing the viscous properties of the medium 

(a > B)* 
Let a viscoelastic cylinder move over a viscoelastic base with a velocity w which is 

much smaller than the speed of sound in the viscoelastic body, which permits inertial 
terms to be neglected in the equilibrium equations. Considering the radius of curvature 

of the cylinder R to be large compared to the dimensions of the contact area, let us 
replace the cylinder by an upper half-plane. Let us examine the problem of the contact 

of two half-planes, where the area of contact shifts with velocity w along them. 
Let us introduce the moving coordinate system 

5 = x0 - wt, Y = Y0 

As the cylinder moves uniformly, the motion of the medium can be considered steady 

relative to the coordinate system moving translationally together with the center of the 
cylinder. Then the displacements and stresses do not depend explicitly on time and are 
functions of only the coordinates. Let us use the notation 

(1) 

u-aw$.=u*(X,y) 

u - au,‘% = u* (x, y) 
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Equations equivalent to the equilibrium, strain compatibility and Hooke’s law equations 
for an isotropic elastic body are satisfied for the quantities Ed*, E y*, ?ry*, ox*, 

ay*, TXY * introduced in this manner. 
Let us consider that the whole contact area consists of two sections: sliding of the 

contacting surfaces occurs on one (-a, c), while adhesion holds on the other (c, b) . 
Because of the smallness of the strain the boundary conditions on the surface will refer 
to the undeformed state of the medium (y = 0). The relationship [B] 

i 
au1 

-- 

8X 
t+) 

I!=0 
= - f’ (5) 

holds between the normal displacements on the contact area. Here u1 and va are the 
normal cylinder and half-plane displacements, respectively, and f (z) is the equation 

of the cylinder outline prior to deformation. We take f (z) = ~2 / 2 R because of 
the smallness of the deformation. Moreover, a linear relationship between the normal 
pressure oy and the tangential stress resultants rXy acting in the lower half-plane 

rXY + PO, = 0 

holds on the sliding section (- a, c) , where p is the coefficient of sliding friction. 

The velocities of the horizontal displacements of points of the cylinder m - wR + 
dui / dt (0 is the angular velocity of the cylinder) and of points of the half-plane 
du, / dt are equal on the adhesion section (c, b) . In the coordinate system coupled 

to the cylinder, the condition of equal velocities is written as follows: 

au2 
ax 6, 

oR-w --- 6=- 
w 

The normal pressure P equilibrating the weight per unit length of the cylinder and the 
rotational moment il!f act on the moving cylinder. The surface of the viscoelastic body 
is free of stress resultants outside the contact area. 

Let us introduce two functions of a complex variable wi (z) and w2 (z) in the lower 
half-plane, which are Cauchy type integrals whose densities are, respectively, equal to 
the magnitudes of the normal pressure and the shear stress resultants acting on the half- 
plane boundary 

h 

201(z) = u1- iv, = c , (%*)u=o & 
---a 

b 

W(z)=U2-iV2== c . 
where at infinity 

WI (2) - -- ;++& w2(z)--++o(+J 

p = i (%)!,=a dx, Q = f (%/)POdX 
--a --a 

It has here been taken into account that the stresses on the boundary of the contact area 
should equal zero at the points - a and b because of smoothness of the roller contour. 

Expressing the images of the pressure (cJ,*)~_o, the shear stress resultants (r*ry)u=o, 
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the derivatives of the displacements (dui* / &)v=,,, (dua* / dz),,, (dvr* / aa$v=~, 
(aua*/d~),,, in terms of the real and imaginary parts of the functions w1 (z) and wz (z) 

[5] and substituting them into the boundary conditions, modified somewhat, taking account 
of(l), we obtain a conjugate problem to seek two functions wi (z) and wa (z) analytic 

in the lower ha1f-plane vi = 0, v2 z 0, _ o. < z < _ a, b < z < + o3 (3) 

Ui= -(x-aw)/KR, Vz=---VI, -a<x<c 

U,=-(x-aw)/KR, Uz=6/K, c<x<b 

(K = 4 (1 - Y”) / ~8) 

Here E is Young modulus, and v is the Poisson’s ratio of the cylinder and base materials. 
The functions solving the problem of a linear conjugate with the listed conditions (3) 

are b 

w1(z) = - T/(z + a,(, -b) _-a s 
~l/(a+x)(b-x5)& - (4) 

Cl 

1/(z + a) (i - b) 
= U1 - iv, 

b - 
6 -cJ b-z dx 1 CZ 

nK, --- x--c x---z (z - c) (z - b) 
= U2 - iVz 

c 

Here c, and cs are some constants with which the solutions of the homogeneous con- 
jugate problem enter. It again follows from the conditions at infinity that Ci = P. 
The functions found on the real axis possess integrable singularities,but this circumstance 

does not involve irregularity in the stress components. 

The representations ofthe stresses in the contact area are expressed in terms of the 
imaginary parts of the functions wi (z) and wa (z) by means of the formulas 

(5y*)1/=0 = f (V&M, (r,,*),=o = f (V&=0 

Separating the imaginary parts in (4) for z = z-i0, we obtain for --a ( 5 < b 

(vl)g=o = JL/(~ + d, (b _ x) 
(a + t) (6 - t> -+_ + t-x (5) 

on the sliding section - a < x < c 

vzL!=o = - P(Vl),=O 

and on the adhesion section c < x < b 

---a 

b - 
6 - - 

JTK II/ b-t dt -- 
t-c t-x 1 c 

dt -- 
t-x 

(6) 
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Evaluating the integral 
b 

l 0, -a<x<b 

for the function (VI),,, in (5) at - a ( x < b we obtain the following expression: 

(vl)‘=o = t/(a $ ;, (b -x) 

(a + W 
8KH 

Let us intrude the notation 

_/_ (3 - aw);;; a - 2z) + P] = ?c (5y*)v=o (8) 

and let us calculate the value of the integrals 

00) 
--a 

m<x<---a, e<x<+m 

0, -a<x<c 

Then on the adhesion section 

(V&o = - p (V&o + [ & (b - c - 2;t: + 2w + ~1 x 

Knowing the expression for the representations of the stresses (8) and (ll), we use (I) and 
find the true stresses at any point on the contact area, for - a ( x < b 

(5Y)Y=o = 
(12) 

on the slip section _ o < J: ( C 

(%&=0 = - P tot/Lo 

and on the adhesion section c < x < b 
2 

(%Jll=o = - P (5&o --lexp x 
@w ( )I[ FG 

&R F-C - 2t + 2a7.4 + (13) 
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6 r’t 
ir Iv 

x exp - 4 dt 

b-_t =p ( 
( ) 

-- &j C-h - .$k exp (jig $ I/p _ &y- q 

Fourunknawnconstants - a, b, c, C, enter into these expressions. They can be deter- 
mined by satisfying the boundary conditions for the real stresses and displacements in 

the viscoelastic body. 

Determining an, / &r = v,,’ and du, / ax = vex’ from the equations 

au;, - aJ: + & uis = -& (u;.J* (i =1,X) 

we have 

- &- exp (2) 5 K(U&=aexp (- &-) dt 
--m 

The strains infinitely remote from the contact area vanish, hence the following condi- 

tion should be satisfied : 
‘r (U&=,, exp (- &-) dt = 0 (15) 
--m 

Taking account of (2) and (15) we obtain the following equation from (14) for the point 

x=b 
-gexp(-;“,=‘[(U&a exp(---$)dt (16) 

Extracting the real part in the function w, (z) in (4) in the interval (b, + oo) and 

using (7). (9) we find the form of the function (C-7,) y=,, for b < x < + oo 

x-aw 
(Ul),=O = - 1/(& t"g;x __) -7 h II 

After having performed the two necessary calculations and manipulations, (16) becomes 

(17) 

where K, (x) and KI (x) are cylinder functions of imaginary argument. 
The second equation to determine the boundaries of the contact area (the points-~ 

and b) is obtained from the condition that the normal pressure at the point b equals 
zero 

1 (VI),+, exp (- k) dJ; = 0 

Substituting here the value(lof the function (VI) +=a from (8) and integrating, we ob- 

tain an equation in which the Bessel functions of imaginary argument 1, (x) and II (x) 

Let us use the notation: 1 = a + b equals the length of the contact area, and d = 
(b - a) / 2 is the coordinate of the middle of the contact area. From (17) and (18) 
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we obtain an equation to determine the length of the contact area I 

i 
P- &-p(~) q-&j + Kb(&-)Il(&J]+ (19) 

w&4&I 1(&)G(&)=O 

The coordinate of the middle of the area al is defined as follows: 

let us find the values of the constants c and C,. From the condition that the.velocities 

on the adhesion section are equal we obtain 

(21) 

which is derived analogously to (16). From (14) and (10) we determine the form of the 

function ( U,) Y_ 0 for b<x<+cm 

(f-J,),=, = - /j-& fb - c - 

PP (z) Ca -- 
Vr(x + a) ((z - b) V’(z - c) (z - b) 

It follows from (16) that ,_ 

Hence, after evaluating the integral in the left side of (21). we obtain 

C 
p (6 - c) (6 + c - 2w) 

2- (22) 

I. 

p (bZ - c”) 
4KjY 

Finally, the requirement that the shear stress resultant on the boundary of the contact 
area be equal at the point x = b, results in the condition 

i 7, (2) l?lzo exp (- g) C&E’= 0 
--a 

Substituting the expression for (I’z)t,zO from (6), (11) here and performing the neces- 
sary calculations, we obtain the equation 

i 
C2 - 

P (b -- c) (b + c - %w) 
4KR -I~qq)(g)+ (23) 

[ 
P(b-c)(6tc-22rw-t2pu,) 

4K1< 
6(b--1 I 6-c 

---E- 12pw= 
f ) 

() 

Let us denote the length of the adhesion section by n = b - C. Then taking account 
of the notation introduced earlier b + c = 2d + I - m. From (22) and (23) we 
obtain an equation to determine the length of the adhesion section m 
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The constant c, is defined as follows: 

cz= z& 
1 
&(2d+I-m--_2aw)- 6- [&(2d-t_z-m- 

2aw + Zpw) - 
61 Ii ($) / IO (2+)} 

(25) 

All the unknown constants of the problem have therefore been determined, 

The length of the contact area b can be found from the solution of@ 9). In the majority of 
cases this equation is solved numerically [6], The solution of (19) was carried out in the paper 

for values of the parameters 05 and fi on the order of 10-r set up to 108 set; the values10 cm/ 

set, 100 cm/see and 1000 cm/set were taken for the velocity w . In all these cases the 
length of the contact area was close to v/8KRPp / a, which equals the length of the 

contact area during rolling over an elastic material with elastic modulus H = aE / 6. 
The modulus H is the instantaneous modulus of elasticity for the material under consi- 
deration. Knowing the length of the contact area, the coordinate of the middle of the 
area d can be determined by means of (20). It is hence seen that G? > 0, i.e. the 
area is shifted in the direction of the cylinder motion. The length of the adhesion sec- 

tion m is found from the solution of (24) and the constant C, from (25). If CC = p, then 
these equations yield the solution of the problem of rolling of an elastic cylinder over 

a base of the same material (with elastic modulus E). Let us use the relationship 

It then follows from (19) and (20) that the iength of the contact area is E = f8KRP 
and it is located ~mme~icaIly relative to the center of the cylinder (d = 0). From 
(24) we obtain that in the case a section with adhesion (m # 0) exists, the section 

with slip has the length 1 - m = 26R 1 P. Substituting the values found for the un- 
known constants in (12) and (13). we obtain expressions for the pressures and shear stress 
resultants in the contact area of an elastic cylinder with an elastic base 

(3&+ = v;K-.r2* -n<x<a 

($Jv=o - i 

- ?& pYF2, -a<x<c 

i 
- -& yra’2Yq-* l/(a-x)(x--c), c<x<a 

(a = 42KNP, - c-1-Jf2KNP+26R/p) 

Let us determine the resistance of the cylinder to motion. The total shear stress on 
the contact area Q is calculated as follows : 

Q = s pGq&& = f (T$ )g=“dLz = { f (v,),&& (26) 
4 -a ---a 

since by virtue of the continuity of the stresses on the boundary of the contact area 
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b 

S( i aZry 
ax dx = 0 

--a l/=0 

The last integral in (26) is easily computed. Taking account of (25) and the notation 

introduced earlier, we obtain the following expression for Q 

A cylinder resistance force Q* equal in magnitude and opposite in direction to the 

force Q acts on the cylinder axis. Moreover, as the cylinder rolls over the viscoelastic 

base, the vertical components of the reaction of the viscoelastic medium does not pass 
through the cylinder center of gravity. Hence, a couple with a moment 

b b 

Ml= ’ 
I 

x (5&=odx = -;i- x (~,),q,dz - @wP 
--a 

(28) 

resists the cylinder motion. It has here been taken into account that 
b 
. . 

s 

%I 

---a 
x aZ u_-o ( ) 

dx==-P 

because of the continuity of the stresses on the boundary of the contact area. Substitub 

ing the value of (VJ l/co from (8) into (28), we obtain the following expression for the 
moment 11/1 1: 

Ml= P(d-f3w)+ & (aw - d) 

The moment Ml , together with the moment of the force Q in (27) relative to the cen- 
ter of the cylinder Ma = QR , produce a rolling friction moment M* = Ml + M,. 
In order for uniform cylinder motion to hold, the moment M applied to it must be equal 
in absolute value to the moment M* of the rolling friction. 

The author is grateful to L. A.Galin for formulating the problem and for constant 

attention to the research. 
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